Kleinprojekt Mastermind

Gabi Rohner Rainer Meier Stephan Krattiger
Im Mattler 8 Késerei Weidentalweg 14
8911 Rifferswil 6288 Schongau 4436 Oberdort

28. Januar 2004

Inhaltsverzeichnis

1 Einleitung

2 Mastermind - das Spiel

2.1 Allgemeines
2.2 Bewertungsregeln L.
2.3 Spielablaufo oo
3 Anforderungen
3.1 Minimale Anforderungen
3.1.1 Vorgaben
3.1.2 Funkioneno
3.2 FErweiterte Anforderungen
321 Vorgaben
3.2.2 Funktioneno

4 Analyse / Design

41 Use Cases s
4.1.1 Neues Spiel beginnen
4.1.2 Codewort eingeben
4.1.3 Codeauswerten
414 Codeaufdecken
4.1.5 Spielende
4.1.6 Spiel beenden

4.2 GUI-Design
4.2.1 Hauptformular,
422 Dialoge L
423 Menitis

5 Realisierung

5.1 UML Diagramme

5.1.1 Klassendiagramme

INHALTSVERZEICHNIS

5.1.2 Sequenzdiagramme

5.2 Screenshots
5.3 Zuséatzliche Features
5.3.1 Hangman .

5.3.2 Konfiguration oo
5.3.3 Offnen / Speichern
5.3.4 Applet / Application

5.3.5 Debuglevels

6 Testing
6.1 User-Testing
6.1.1 Die Testfille

7 Quellen / Tools

14
21
25
25
25
25
26
26

27
27
27

29

Kapitel 1

Einleitung

Die Hochschule fiir Technik und Architektur fordert im Studiengang Informa-
tik im Fach Programmieren die Durchfiihrung eines Kleinprojektes. In diesem
Kleinprojekt handelt es sich um eine anspruchsvollere Problemstellung als es
die Aufgaben wéihrend den ersten beiden Semestern bisher beinhaltet haben.
Anhand dieses Projektes erlernen die Studentinnen und Studenten die Pla-
nung und Realisierung objektorientierter Software im kleineren Rahmen, den
Umgang mit den Dokumentationswerkzeugen UML und JavaDoc, der Bau
eines eigenen GUIs, die Entwicklung eigener Algorithmen und allenfalls das
File-Handling, die Objekt-Serialisierung und das MVC-Konzept.

Kapitel 2

Mastermind - das Spiel

2.1 Allgemeines

Mastermind ist ein Spiel fiir zwei Spieler. Ein Spieler gibt ein Codewort
(Kombination von Farben) vor und der andere versucht dieses Codewort in
einer vorgegebenen Anzahl Versuchen zu erraten. Der vorgebende Spieler
bewertet dabei jeden Versuch des ratenden Spielers nach seiner Korrektheit
mit schwarzen und weissen Pins.

2.2 Bewertungsregeln

Schwarzer Pin: richtige Farbe an der richtigen Stelle erraten
Weisser Punkt: richtige Farbe aber an der falschen Stelle erraten

Dabei hat die Reihenfolge der gegebenen Punkte nichts mit der Reihenfolge
im geratenen oder vorgegebenen Codewort zu tun. Jede Farbe in der Vorgabe
und im Versuch darf nur einmal zur Bewertung herangezogen werden. Ist das
Codewort geknackt, so wird dies durch vier schwarze Pins gekennzeichnet.

2.3 Spielablauf

Der Computer gibt ein zufélliges, dem gewé&hlten Schwierigkeitsgrad entspre-
chendes Codewort vor. Anschliessend kann der Spieler seine Versuche starten
und vom Computer bewerten lassen.

Kapitel 3

Anforderungen

3.1 Minimale Anforderungen

Die minimalen Anforderungen beschreiben die Projektvorgaben des Dozen-
ten. Sie sind zwingen zu implementieren. Minimale Anforderungen sind alle
Grundfunktionen / Vorgaben, die nétig sind, dass man Mastermind iiber-
haupt spielen kann.

3.1.1 Vorgaben
Anzahl Farben: 6

Anzahl Versuche: 8

Lange des Codeworts: 4
Mehrfachfarben nicht erlaubt

Korrekturreihenfolge entspricht Pinreihenfolge

3.1.2 Funkionen

e Computer gibt zufélliges Codewort vor

Neues Spiel

Spiel beenden
e Pin setzen

Gestecktes Codewort auswerten

Codewort aufdecken

KAPITEL 3. ANFORDERUNGEN 6

3.2 Erweiterte Anforderungen

Die erweiterten Vorgaben wurden teilweise vom Dozenten angedacht und als
”Nice to have” eingestuft. Ebenso beinhalten sie die Ideen und Anregungen
der Projektmitglieder.

3.2.1 Vorgaben

Mehrfachfarben erlaubt
Korrekturreihenfolge entspricht nicht Pinreihenfolge
Zeitlimite fiir Rateversuche

Multiplayer

3.2.2 Funktionen

Spielmode #nderbar (Einfach-/Mehrfachfarben)

Anzeige und Berechnung eines Scores (Berechnung aus Spielmode und
Anzahl Versuche)

Speichern des High-Scores (z.B. Top-Ten)
Spieleranzahl &nderbar (Single-/Multiplayer)
Sprache wihlbar

Hangman-Animation passend zu den noch verbleibenden Anzahl Ver-
suchen

Kapitel 4

Analyse / Design

4.1 Use Cases

Ein Anwendungsfall (Use Case) ist die typische Beschreibung einer grund-
legenden Interaktion zwischen dem Anwender (User) bzw. Akteur und dem
System. Ein Anwednungsfall geht nicht auf die Details der Benutzerschnitt-
stelle ein, ausser sie wiren zentral fiir das Systemverhalten.

4.1.1 Neues Spiel beginnen

Akteur Spieler

Kurzbeschreibung Ein neues Spiel beginnen

Vorbedingungen Keine

Nachzustand Geheimcode ist zufillig gesetzt
Spielbrett ist leer

Fehlersituationen Keine

Nachzustédnde im Fehlerfall | Keine

Standardablauf Spieler wéhlt "neues Spiel”

System macht Riickfrage
System initialisiert Spiel

Alternativablaufe Wird automatisch nach dem Pro-
grammstart ausgefiihrt
Regeln Keine

KAPITEL 4. ANALYSE / DESIGN

4.1.2 Codewort eingeben

Akteur Spieler

Kurzbeschreibung Ein Codewort zum Erraten des Codes
eingeben

Vorbedingungen Spiel gestartet

Nachzustand Codewort eingegeben

Fehlersituationen In falscher Zeile eingegeben (z.B. in lee-

rer oder in schon korrigierter Zeile)

Nachzustiande im Fehlerfall

Aufforderung zur Eingabe in richtiger
Zeile

Standardablauf Spieler wahlt fiir jedes der vier Felder
eine Farbe

Alternativabléufe keine

Regeln Jede Farbe nur ein Mal benutzen

4.1.3 Code auswerten

Akteur System

Kurzbeschreibung Code wird vom System ausgewertet
Vorbedingungen Code eingegeben

Nachzustand Korrektur gemacht, bewertet
Fehlersituationen Nicht alle vier Felder gesetzt

Nachzustiande im Fehlerfall

Aufforderung zum Ausfiillen aller Fel-
der

Standardablauf 1. System vergleicht Codewort mit
Losung
2. System wertet aus
3. System gibt Resultat auf GUI aus
Alternativabléufe keine
Regeln Weiss: Farbe richtig, aber am falschen

Ort

Schwarz: Farbe und Ort richtig

Die Reihenfolge der Losungsstecker
héngt nicht mit der Reihenfolge der
Loésung zusammen

KAPITEL 4. ANALYSE / DESIGN

4.1.4 Code aufdecken

Akteur Spieler
Kurzbeschreibung Spieler gibt auf und méchte die Losung
sehen
Vorbedingungen Spiel gestartet
Nachzustand Code (Losung) ist aufgedeckt
Fehlersituationen keine
Nachzusténde im Fehlerfall | keine
Standardablauf 1. Spieler driickt ”Spiel beenden”
2. System deckt Losung auf
Alternativablaufe keine
Regeln keine
4.1.5 Spielende
Akteur System
Kurzbeschreibung Spiel ist zu Ende weil Code erraten oder
weil Spieler verloren (nicht geschafft in
8 Versuchen)
Vorbedingungen - 8 erfolglose Versuche
- Spieler hat Code erraten
Nachzustand - GUI-Ausgabe: Gratulation
- Highscore zeigen und speichern
Fehlersituationen keine
Nachzustédnde im Fehlerfall | keine
Standardablauf 1. Spieler hat nicht gewonnen
2. GUI-Ausgabe: Pech gehabt
3. Losung aufdecken (Siehe Anwen-
dungsfall ” Code aufdecken”)
4. Highscore anzeigen
Alternativablaufe 1. Spieler hat Code in weniger als 8 Ver-
suchen erraten
2. Name vom Spieler abfragen
3. Eintrag in Highscoreliste
4. Highscore anzeigen
Regeln Ein Spiel ist beendet falls Code erraten,

oder falls Code nicht in weniger als 8
Versuchen erraten.

KAPITEL 4. ANALYSE / DESIGN 10

4.1.6 Spiel beenden

Akteur Spieler

Kurzbeschreibung Applikation wird beendet

Vorbedingungen Applikation lauft

Nachzustand Applikation ist beendet

Fehlersituationen keine

Nachzustéinde im Fehlerfall | keine

Standardablauf 1. Spieler driickt ”Beenden”
2. System beendet

Alternativablaufe keine

Regeln keine

4.2 GUI-Design

Folgende Bilder zeigen die ersten Entwiirfe unserer Oberfliche. Die Desi-
gnvorschlige beinhalten alle definierten Elemente. Die Anordnung und defi-
nitive Implementierung wird sich dann beim Programmieren des Graphical
User Interfaces ergeben.

4.2.1 Hauptformular

Das Hauptformular besteht im wesentlichen aus dem Spielbrett (Matrix) und
dem Pin-Vorrat (Abbildung 4.1). Uber der Spielmatrix wird die Losung im
Falle, dass das Spiel gelost wurde angezeigt. Ebenfalls soll der Username
wéahrend dem Spiel am oberen Rand dargestellt werden.

4.2.2 Dialoge

Dialoge gibt es im Wesentlichen in unserem Mastermind nur einen. Der Opti-
onsdialog (Abbildung 4.2) bietet dem Benutzer die Moglichkeit die Spielein-
stellungen anzupassen. In ihm werden beispielsweise der Playername, die An-
zahl Pins und die Grosse der Matrix, das Aussehen der Pins, usw. festgelegt.

4.2.3 Meniis

Jede Aktion kann iiber einen Meniipunkt aufgerufen werden. Die Meniis (Ab-
bildung 4.3) sind in die Kategorien Datei, Spiel und Hilfe gegliedert. Unter
"Datei” sind alle Punkte fiir die grobe Steuerung (Speichern, Beenden, usw.)

KAPITEL 4. ANALYSE / DESIGN

Mastermind |9

Datei Spiel Hilfe

[Shybeam

h
F_H E
M A [B h

S
A

X

Abbildung 4.1: das Hauptformular der Applikation

KAPITEL 4. ANALYSE / DESIGN 12

Optionen

Abbildung 4.2: der Optionsdialog der Applikation

Abbildung 4.3: die Meniis ”Datei”, ”Spiel” und ”Hilfe” der Applikation

Al ﬁqden. ”Spiel” umfasst alle relevanten Meniieintrage um ein Spiel zu spie-
len. Uber den Meniipunkt Hilfe gelangt man zu der eigentlichen Online-Hilfe
und der About-Box.

Kapitel 5

Realisierung

In der ganze Realisierungsphase wurde sehr viel Wert auf das MVC-Konzept
gelegt (Abbildung 5.1). Aus diesem Grund sind auch unsere 3 Hauptpackages
Model, View und Control entstanden. Wir haben das grundlegende MVC-
Konzept ein wenig auf unsere Bediirfnisse angepasst. In unserer Version fiel
der Update-Link vom Model zur View weg, da jegliche Kommunikation zwi-
schen dem Model und der View iiber den Controller abgewickelt wird.

5.1 UML Diagramme

5.1.1 Klassendiagramme

In unserem UML-Klassendiagramm erkennt man anhand der Packagedefini-
tionen die Implementation des MVC-Konzeptes. In der Planungsphase wurde
der grosste Teil unserer UML-Diagramme bereits erstellt. Einzig die extrem
spezifischen GUI-Klassen wurden nachtraglich wihrend der Realisierung ein-

Model update
4 I
View
get data
change
change
Controller

Abbildung 5.1: das grundlegende MVC-Konzept

13

KAPITEL 5. REALISIERUNG 14

gefiigt, da wihrend der Planung nur die Haupt-GUI-Klasse zur Diskussion
stand.

Unser UML-Diagramm basiert auf einem Hauptpackage mastermind und 3
Unterpackages model, view und control. Im Model-Package befinden sich al-
le Klassen welche in irgend einer Weise dazu dienen die Daten zu speichern.
Das Control-Package beinhaltet genau eine Klasse, die Contoller-Klasse. Al-
le Klassen welche irgend eine darstellungstechnische Funktion wahrnehmen
befinden sich im View-Package.

Fiir eine detaillierte Funktionsbeschreibung der einzelnen Klassen und deren
Methoden konsultieren Sie bitte unsere beiliegende JavaDoc.

5.1.2 Sequenzdiagramme

Ebenfalls wurden bereits wahrend der Analyse- und Designphase, nachdem
das UML-Klassendiagramm definiert war, einige Sequenzdiagramme ange-
fertigt. Diese UML-Sequenzdiagramme wiederspiegeln nicht mehr genau den
Ist-Zustand, aber die eigentliche Kommunikation, bzw. die Interaktionen zwi-
schen den einzelnen MVC-Elementen wird immer noch schén visualisiert.
Als Beispiel dient die Aktion ”Spiel Starten” (Abbildung 5.8). An diesem
Beispiel kann man einfach nachvollziehen, wie der Benutzer auf dem GUI
(durch eine Aktion) den Event an den Controller auslost. Dementsprechend
erstellt der Controller anschliessen den ratenden Spieler (in dem Fall das
Objekt fiir den menschlichen Spieler mit Username, usw.) und das Objekt
fiir den vorgebenden Spieler (in diesem Fall der Computer). Anschliessend
erstellt er mit den neuen Werten eine neue Matrix und registriert sich auch
gleich bei ihr als Listener. Anschliessend benachrichtigt er das GUI, dass sich
die Matrix gedndert habe und veranlasst so einen Repaint des Spielfeldes.
Ahnlich laufen die Aktionen beim Setzen von einem neuen Pin ab (Abbildung
5.9). Wiederum geht die Aktion vom Benutzer aus, welcher auf dem GUI
einen Pin auf die Spielflache gesetzt hat. Das GUI sendet wieder einen Event
(mit den Pindaten) ab. Der Controller als Listener fiir diesen Event reagiert
entsprechend und veranlasst die Matrix diesen Spielzug zu speichern. Die
Matrix wiederum feuert den néchsten Event, dass Sie sich geéindert habe und
das GUI zeichnet darauf ihr Spielfeld neu. So wird verhindert, dass zwischen
GUI-Spielfeld und den Daten in der Matrix Unterschiede entstehen. Auch
wenn etwas anderes unsere Matrix verdndern wiirde, so wiirde sich unser
GUI automatisch aktualisieren, da die Matrix bei jeder Verdnderung einen
Event feuert.

KAPITEL 5.

REALISIERUNG

Abbildung 5.2: unser UML-Diagramm

15

KAPITEL 5. REALISIERUNG

model

Matrixinterface @

+addMatrixListener{ matrixListener : MatrixListenerinterface) . void
+getCorrectionOrder() . boolean

+getCormrectPins(row int) - int

+getCurrentRowy) © int

+getiultiColoiode() © boolean

+gethumberOfFinTypes(. int

+getPin{ x - int, ¥ 2 int) : Fin

+getPinMatrix() - Pin[li]

+getsizeX() int

+getsizeY() . int

+getWrongFPositionFins(row - int) - int

+givellp() © void

+removelatrixListener{ matrixListener : MatrixListenerinterface) . void
+reveal() : void

+setPin(pin : Pin, x . int, i - int) ; void

T

Matrix

-correctionOrder : boolean = true
-currentRow :int=1
-gameFinished : hoolean = false
-gameStarted : boolean = false
-guessWord : Pin |
-matrixListeners : Vector = new Vector()
-multiColoriode : boolean = true
-numhberofPinTypes [int=6
-pinMatrix : Pin 10

-sizeX int=18

-sizeY int=4

-stopWatch : StopWatch

+addmMatrixListener] matrixListener : MatrixListenerinterface) : void
-fireGameLostAction() : void

-fireGiveUpAction() : void

-fireMatrixChangedEvent() : void

-fireSolvedEvent() : void

+getCorrectionOrder) : boolean

+getCorrectPins(row :int) :int

+getCurrentRow() : int

+gethultiColorMode() : boolean

+getMumberQfPinTypes() : int

+getPin(x int, y:int) : Fin

+getPinMatrix) : Pin(0

+getSizeX () :int

+getSizeY () :int

+getWrongPositionPins{ row ; int) : int

+givellp() : void

+Matrix sizeX : int, size¥ : int, guessWord : Pin[], multiColor : boolean, correctionOrder : hoolean, numberOfFinTypes @ int)
+removeMatrixListener] matrixListener : MatrixListenerinterface) : void
+reveal() : void

+setPin{ pin: Pin, x:int, y 2 int) ; void

Abbildung 5.3: das Matrix-Model

KAPITEL 5. REALISIERUNG 17

Abbildung 5.4: das Hiscore-Model

Abbildung 5.5: das Player-Model

KAPITEL 5. REALISIERUNG

Mastermind

PSRRI
+start() : void

¥

control

Controller

+aboutAction() : void

+Controller()

+gameLostAction solution ; Pin[, time ; long J : void
+getGuessingPlayer() . GuessingPlayerinterface
+getSettingPlayer() : SettingP layerlnterface
+giveldpAction(: void

+givelpAction(solution : Pinf], time : long) : vaid
+helpAction() : void

+hideApplication() : void

+isWisible() : boolean

+loadGameAction() : void

+matrixChangedAction(matrix ; Matrix) - void
+newGameAction() : void

+optionsAction() ; void

+optionsChangedAction{ optionChangedEvent : OptionChangeEvent) : void
+pinChangedAction(changeEvent : FinChangedEvent) : void
+ouitAction() : void

+revealAction() : void

+saveGameAction(: void

+showApplication() : void

+showHighscoreAction() : void

+solvedAction(solution : Pin[, time : long) : void

GameSettings

+getbumberOfColumns() : int
+getiumberOfPinTypes(: int

+getiumberOfRows() : int

+getPinvariation() : int

+getPlayerMame() : String

+isCorrectionOrder() : boolean

+isMultiColorMode() : hoolean

+mainf args - Stingl) - void

+setCorrectionCrder(correctionOrder : boolean) : void
+sethultiColorMode(multiColorMode © boolean) : void
+setilumberOfColumns] numberdfColumns :int) : void
+setblumberOfPinTypes(numberDfPinTypes :int) : void
+sethumberOfRows(numberOfRows ©int) : void
+setPinVariation(pinVariation : int) : void
+setPlayerMame(playerMame : String) : void

Abbildung 5.6: das Contol-Package

18

KAPITEL 5. REALISIERUNG

Abbildung 5.7: das View-Package

I

! 1: newGameActio

7 matrixChang

2: new GuessingPlayer() HumanPlayer

3 new ComputerPlayer()

4: gethlewGuessWord()

6. new Matrix()

G addMatrixChangedListener(MatrixChangeListenerIntei‘face)

8: repaint()

ction(Matrix)

Abbildung 5.8: UML-Sequenzdiagramm " Spiel starten”

19

KAPITEL 5. REALISIERUNG

] (=]

1 getNewPil%:Pin

2: pinChangddAction(PinChangedEvent)

T
3 setPinl p Pin, intx, inty)

| 4 fireMatrixChangedBvent
|

|
5 matl'ixChianclecIActinnf matrix Watrix)

|
|
6: repaint() |

Abbildung 5.9: UML-Sequenzdiagramm ”Pin setzen”

20

KAPITEL 5. REALISIERUNG

5.2 Screenshots

& Mastermind
Datei Spiel Hilfe

Lisung: Auswahl:
? 7 ? ?
Spielfeld: Losung:

do0009

d000

d000

Pin Auswahl:

erten ’W

=loix|

Abbildung 5.10: der Splash-Screen

KAPITEL 5. REALISIERUNG

x
~Modus ~Lewvel
)) Mehrfarbig) Easy () Normal
~Anzahl Pins ~Spielfeld
Pin Auswahl: | 6= Zeilen: | 2= Spalten: | 4=
~Design ~Sprache
~Name
| ok || apbrechen |
Player
Abbildung 5.11: der Optionsdialog
=lofx|

Datei Spiel Hilfe

[Player |
-Lasung: —
]] @
pi rLisung:

I |
=~ X B |, ,
I
Ol Nl =R A0
= o o
= (AR . »
» @
o @
» @
s @
» @
s @
» @
@
» @
@

N

| Euswerten H aufgeben

Pin

=~
|

b
3

(AN
EJ

Abbildung 5.12: das Spielfeld

KAPITEL 5. REALISIERUNG

@ Mastermind

Datei Spiel Hilfe

|Player

=lolx|

rLosung:

3

rLosung:——
@ 9

@ @

e0| B oo I |lm oo T3 X

Bloo| 3| B|ef

o 0 /\
@ 9
ot o | auswerten || aufgeben
@ 9
@ @ | Pin
U
o ol 04 AR
L
=
oo E 3

Abbildung 5.13: ein verlorenes Game mit gehéngtem Kenny

'j,;._."*.} Highscore

Filter, -Modus

W || ®) Mehrfarbig

Level

) Easy (@) Normal Pin Auswahl: | 6= | Zeilen: | 8= Spatten: | 4/

x|

~Anzahl Pins

Spielernarne |

Datum | Feit \

MC | Mode | Fins | Spaten | Zeilen

o |

Abbildung 5.14: die Hiscore-Tabelle

23

KAPITEL 5. REALISIERUNG

& Hilfe

[ET=]2]

Mastermind

All - .
SemEn Kurze Einfilihrung
BEdlEnUﬂgSamEltUﬂg

Lizenz Was ist "Mastermind"

Im Rahmen eines Kleinprojektes der Hochschule far Technik und
Architektur (HTA) Horw wurde die Aufgabe gestellt das Spiel "Masterming”
in Java zu realisieren

Der Projektauftrag

Allgemeines

ok |

Abbildung 5.15: die Hilfe

vl
| 1

oK |

Abbildung 5.16: der About-Dialog

KAPITEL 5. REALISIERUNG 25

5.3 Zusatzliche Features

Waéhrend der ganzen Realisierungsphase kamen uns immer wieder irgendwel-
che speziellen Sonderfunktionen in den Sinn. Diese Sonderfunktionen hatten
nicht immer einen direkten Zusammenhang mit dem Mastermind-Spiel, viel-
mehr waren es Funktionen, von denen man einmal gehort hatte und gerne
einmal programmiert hétte. Diese Wiinsche wurden aufgenommen und ohne
Prioritét teilweise entwickelt. So entstanden diverse Funktionen, hinter denen
eine grosse Menge Arbeit und Spass stehen und hier dokumentiert werden.

5.3.1 Hangman

Die Idee des mitwachsenden Hangmans ist eher zufillig entstanden, nachdem
ein Projektteammitglied diese beiden Spiele einmal namentlich vertauscht
hatte. Die Idee wurde analysiert und in Angriff genommen. Der Hangman
(Kenny) wéchst dynamisch mit jeder Linie die man im Mastermind nicht
erraten hat. Wurde das Spiel nicht gelost, so ”héngt” Kenny und der typische
Sound ”Oh my god, they killed Kenny!” erklingt aus den PC-Speakers. Wie
anfianglich erwidhnt, hat jedes Feature auch einen gewissen Programmierreiz
hervorgerufen. Deshalb wurde das Zeichnen des Hangmans auch mit einem
Thread realisiert, welcher die Linien zuséatzlich animiert.

5.3.2 Konfiguration

Die "normale” Ausfiithrung eines Masterminds besteht aus einem Spielfeld
mit 4 Spalten, 8 Reihen und 6 unterschiedliche Pins. Unser Mastermind kann
individuell konfiguriert werden. Das heisst, jegliche Spielgrossen kénnen an-
gepasst werden. Beispielsweise kann die Spielfeldgrosse grosser oder kleiner
eingestellt werden. Wem die Standardpins zu langweilig sind kann auch zwi-
schen diversen anderen Variationen eine auswéhlen.

5.3.3 Offnen / Speichern

Anfanglich war auch angedacht, dass man zu einem beliebigen Zeitpunkt sein
begonnenes Spiel zu speichern und zu einem spéteren Zeitpunkt fortsetzen.
Der Grundgedanke hinter dieser Idee war das Interesse an der Serialisierung
von Objekten. Die ganze Geschichte wurde dann auch implementiert und
ausfiihrlich getestet. Einige Zeit spéter, nachdem unser Mastermind einige
realen Test unterzogen wurde, haben wir uns entschieden die beiden Funk-
tionen zum Offnen und Speichern der Spielstinde wieder zu entfernen. Diese
Funktionen hatten einen grossen Nachteil: Wird ein Spiel gestartet und dann

KAPITEL 5. REALISIERUNG 26

bereits gespeichert, so kann man in aller Ruhe das Spiel 16sen. Mit der so
erratenen Losung kann man nun den alten Spielstand wieder laden und das
Spiel nach einem Spielzug und wenigen Sekunden Zeit 16sen. Diese Funk-
tionen dienten also dem Verfilschen unserer Hiscore und genau das wollten
wir von Anfang an verhindern. Deshalb konnen in der aktuellen Version die
Spielstédnde nicht mehr gespeichert, bzw. geladen werden.

5.3.4 Applet / Application

Unser Mastermind kann wahlweise als Java Application oder als Java Applet
ausgefithrt werden. Der Clou daran ist jedoch, dass nur ein Java Archive
File existiert und die beiden Varianten in der selben Code-Struktur realisiert
wurden.

Applet-Code

<applet code=’’ch.skybeam.mastermind.Mastermind’’
archive=’’Mastermind. jar’’ name=’’Mastermind’’ width = ’’686°°
height=’’385’’ id=’’Mastermind’’> </applet>

5.3.5 Debuglevels

Wéahrend der ganzen Entwicklung mussten immer wieder diverse Debug-
Ausgaben geschrieben werden. Diese ganzen Meldungen wurden iiber eine
zentrale Funktion ausgegeben. Die Debug-Meldungen wurden in verschiede-
ne Levels unterteilt:

Level 1 Normale Debug-Meldungen
Level 9 Debug-Meldungen mit zusétzlichen Thread-Informationen

Die Debug-Ausgaben kénnen mit folgendem Befehl aktiviert werden:
java -DDEBUG=[Debuglevel] -jar Mastermind.jar

Kapitel 6

Testing

Mastermind wurde in zwei Testbereiche unterteilt. Das funktionale Testing
wurde mittels JUnit-Testcases realisiert. Fiir den zweiten Bereich, dem User-
Testing, wurden verschiedene Test-Szenarios aufgestellt und gepriift ob die
Applikation auch entsprechend unseren Erwartungen reagiert.

6.1 User-Testing

Die verschiedenen Testfille wurden (mit Hilfe der anfinglich definierten Use-
Cases) festgelegt und anschliessend durch Benutzer durchgefiihrt.

6.1.1 Die Testfille

| Nr.| Beschreibung | Erwartetes Resultat | Ergebnis |
1 Reihe auswerten | Meldung, dass zuerst | Dialog: ”Sie haben
bevor die ganze | die ganze Reihe aus- | versucht eine un-
Reihe gefiillt ist gefiillt werden muss vollstandige Reihe
auszuwerten. Bitte
vervollstandigen Sie
zuerst die Reihe!”
2 | Reihe falsch | Hangman baut sich | Hangman baut sich
ausfiillen um eine Stufe auf. auf
3 | Codewort in "An- | Kenny ist tot /| Hangman wurde in
zahl Zeilen” - | gehéngt. den Anzahl Zeilen
Ziigen nicht erra- vollsténdig aufgebaut.
ten.

27

KAPITEL 6. TESTING 28

4 | Optionen einstellen | Mehrfachfarben er- | Meldung, dass Op-
auf: Modus = | laubt, Korrektur | tionen verdndert und
Mehrfarbig, Level | zeigt nicht an welcher | deshalb ein neues
= Normal, Anzahl | Punkt richtig war, | Spiel gestartet werden
Pins = 8, Spielfeld: | Spielfeld ist 8x4, | muss. Bestéatigung
8x4, Design = | Design ist Zahlen, | durch OK.
numbers, Name = | Spielername ist Gabi
Gabi

5 | Spiel ist gewonnen. | Losung wird aufge- | Losung aufgedeckt

deckt.

6 | Spiel wird aufge- | Losung wird aufge- | In den Losungsfel-
geben, indem der | deckt. dern erscheinen die
Button ”aufgeben” Losungspins
gedriickt wird.

7 Pin in der Pinaus- | Im Feld ” Auswahl” er- | Nachdem der Pin mit
wahl anklicken. scheint der gewéhlte | der Maus gewahlt

Pin. wurde, wird er in der
Auswahl angezeigt

8 |In den Optionen | Name erscheint auf | Korrekter Name ist
den Spielernamen | dem Spielbrett. auf dem Spielbrett
angeben. sichtbar

9 | Hilfe anzeigen Beschreibung des | Dialog mit Benutzer-

Mastermindes wird | anleitung wird geoff-
angezeigt. net

10 | Spiel beenden Mastermind wird ge- | Mastermind wird ge-

schlossen Fenster schlossen

11 | Spiel "neues Spiel” | Spielfeld wird geleert. | Neues Spielfeld mit

neuem Codewort zum
erraten gezeichnet

12 | Hiscore 6ffnen Hiscore wird angezeigt | Dialog mit Highscore

offnet sich

13 | Zeilen ausfiillen | Korrekturpunkte rich- | Nach mehrmaligen
und iiberpriifen, ob | tig anhand des Le- | Tests kann man sagen,
richtig ~ korrigiert | vels und der Uberein- | dass die Korrektur
wird. stimmungen mit der | richtig funktioniert

Losung

Kapitel 7
Quellen / Tools

http://www.skybeam.ch/mastermind Unsere Projektwebseite

http://www.adarvo.ch Jegliche Dokumente (ohne Quellcode) wurden iiber
Adarvo ThemeWare ausgetauscht / verwaltet.

http://www.cvshome.org Unser gesamter Sourcecode wurde mittels CVS-
System verwaltet.

http://www.eclipse.org Als IDE fiir Java setzten wir Eclipse ein.
http://java.com/de Software Development Kit for Java
http://www.magicdraw.com Der von uns eingesetzte UML-Designer
http://www.dante.de Dieses Dokument wurde mit IXTEX 22 geschrieben

http://www.uml.org Alle Code-Visualisierungen wurden mit der Unified
Modelling Language erstellt

29

Abbildungsverzeichnis

4.1
4.2
4.3

5.1
5.2
2.3
0.4
2.5
5.6
5.7
0.8
2.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16

das Hauptformular der Applikation
der Optionsdialog der Applikation
die Meniis ”"Datei”, ”Spiel” und ”Hilfe” der Applikation

das grundlegende MVC-Konzept
unser UML-Diagramm
das Matrix-Model oo
das Hiscore-Model
das Player-Model L.
das Contol-Package
das View-Package L.
UML-Sequenzdiagramm ”Spiel starten”
UML-Sequenzdiagramm ”Pin setzen”
der Splash-Screen L.
der Optionsdialog
das Spielfeld
ein verlorenes Game mit gehdngtem Kenny
die Hiscore-Tabelle
die Hilfe
der About-Dialogo

30

