
Kleinprojekt Mastermind

Gabi Rohner
Im Mattler 8

8911 Rifferswil

Rainer Meier
Käserei

6288 Schongau

Stephan Krattiger
Weidentalweg 14
4436 Oberdorf

28. Januar 2004

Inhaltsverzeichnis

1 Einleitung 3

2 Mastermind - das Spiel 4
2.1 Allgemeines . 4
2.2 Bewertungsregeln . 4
2.3 Spielablauf . 4

3 Anforderungen 5
3.1 Minimale Anforderungen . 5

3.1.1 Vorgaben . 5
3.1.2 Funkionen . 5

3.2 Erweiterte Anforderungen . 6
3.2.1 Vorgaben . 6
3.2.2 Funktionen . 6

4 Analyse / Design 7
4.1 Use Cases . 7

4.1.1 Neues Spiel beginnen 7
4.1.2 Codewort eingeben . 8
4.1.3 Code auswerten . 8
4.1.4 Code aufdecken . 9
4.1.5 Spielende . 9
4.1.6 Spiel beenden . 10

4.2 GUI-Design . 10
4.2.1 Hauptformular . 10
4.2.2 Dialoge . 10
4.2.3 Menüs . 10

5 Realisierung 13
5.1 UML Diagramme . 13

5.1.1 Klassendiagramme . 13

1

INHALTSVERZEICHNIS 2

5.1.2 Sequenzdiagramme . 14
5.2 Screenshots . 21
5.3 Zusätzliche Features . 25

5.3.1 Hangman . 25
5.3.2 Konfiguration . 25
5.3.3 Öffnen / Speichern . 25
5.3.4 Applet / Application 26
5.3.5 Debuglevels . 26

6 Testing 27
6.1 User-Testing . 27

6.1.1 Die Testfälle . 27

7 Quellen / Tools 29

Kapitel 1

Einleitung

Die Hochschule für Technik und Architektur fordert im Studiengang Informa-
tik im Fach Programmieren die Durchführung eines Kleinprojektes. In diesem
Kleinprojekt handelt es sich um eine anspruchsvollere Problemstellung als es
die Aufgaben während den ersten beiden Semestern bisher beinhaltet haben.
Anhand dieses Projektes erlernen die Studentinnen und Studenten die Pla-
nung und Realisierung objektorientierter Software im kleineren Rahmen, den
Umgang mit den Dokumentationswerkzeugen UML und JavaDoc, der Bau
eines eigenen GUIs, die Entwicklung eigener Algorithmen und allenfalls das
File-Handling, die Objekt-Serialisierung und das MVC-Konzept.

3

Kapitel 2

Mastermind - das Spiel

2.1 Allgemeines

Mastermind ist ein Spiel für zwei Spieler. Ein Spieler gibt ein Codewort
(Kombination von Farben) vor und der andere versucht dieses Codewort in
einer vorgegebenen Anzahl Versuchen zu erraten. Der vorgebende Spieler
bewertet dabei jeden Versuch des ratenden Spielers nach seiner Korrektheit
mit schwarzen und weissen Pins.

2.2 Bewertungsregeln

Schwarzer Pin: richtige Farbe an der richtigen Stelle erraten
Weisser Punkt: richtige Farbe aber an der falschen Stelle erraten

Dabei hat die Reihenfolge der gegebenen Punkte nichts mit der Reihenfolge
im geratenen oder vorgegebenen Codewort zu tun. Jede Farbe in der Vorgabe
und im Versuch darf nur einmal zur Bewertung herangezogen werden. Ist das
Codewort geknackt, so wird dies durch vier schwarze Pins gekennzeichnet.

2.3 Spielablauf

Der Computer gibt ein zufälliges, dem gewählten Schwierigkeitsgrad entspre-
chendes Codewort vor. Anschliessend kann der Spieler seine Versuche starten
und vom Computer bewerten lassen.

4

Kapitel 3

Anforderungen

3.1 Minimale Anforderungen

Die minimalen Anforderungen beschreiben die Projektvorgaben des Dozen-
ten. Sie sind zwingen zu implementieren. Minimale Anforderungen sind alle
Grundfunktionen / Vorgaben, die nötig sind, dass man Mastermind über-
haupt spielen kann.

3.1.1 Vorgaben

• Anzahl Farben: 6

• Anzahl Versuche: 8

• Länge des Codeworts: 4

• Mehrfachfarben nicht erlaubt

• Korrekturreihenfolge entspricht Pinreihenfolge

3.1.2 Funkionen

• Computer gibt zufälliges Codewort vor

• Neues Spiel

• Spiel beenden

• Pin setzen

• Gestecktes Codewort auswerten

• Codewort aufdecken

5

KAPITEL 3. ANFORDERUNGEN 6

3.2 Erweiterte Anforderungen

Die erweiterten Vorgaben wurden teilweise vom Dozenten angedacht und als
”Nice to have” eingestuft. Ebenso beinhalten sie die Ideen und Anregungen
der Projektmitglieder.

3.2.1 Vorgaben

• Mehrfachfarben erlaubt

• Korrekturreihenfolge entspricht nicht Pinreihenfolge

• Zeitlimite für Rateversuche

• Multiplayer

3.2.2 Funktionen

• Spielmode änderbar (Einfach-/Mehrfachfarben)

• Anzeige und Berechnung eines Scores (Berechnung aus Spielmode und
Anzahl Versuche)

• Speichern des High-Scores (z.B. Top-Ten)

• Spieleranzahl änderbar (Single-/Multiplayer)

• Sprache wählbar

• Hangman-Animation passend zu den noch verbleibenden Anzahl Ver-
suchen

Kapitel 4

Analyse / Design

4.1 Use Cases

Ein Anwendungsfall (Use Case) ist die typische Beschreibung einer grund-
legenden Interaktion zwischen dem Anwender (User) bzw. Akteur und dem
System. Ein Anwednungsfall geht nicht auf die Details der Benutzerschnitt-
stelle ein, ausser sie wären zentral für das Systemverhalten.

4.1.1 Neues Spiel beginnen

Akteur Spieler
Kurzbeschreibung Ein neues Spiel beginnen
Vorbedingungen Keine
Nachzustand Geheimcode ist zufällig gesetzt

Spielbrett ist leer
Fehlersituationen Keine
Nachzustände im Fehlerfall Keine
Standardablauf Spieler wählt ”neues Spiel”

System macht Rückfrage
System initialisiert Spiel

Alternativabläufe Wird automatisch nach dem Pro-
grammstart ausgeführt

Regeln Keine

7

KAPITEL 4. ANALYSE / DESIGN 8

4.1.2 Codewort eingeben

Akteur Spieler
Kurzbeschreibung Ein Codewort zum Erraten des Codes

eingeben
Vorbedingungen Spiel gestartet
Nachzustand Codewort eingegeben
Fehlersituationen In falscher Zeile eingegeben (z.B. in lee-

rer oder in schon korrigierter Zeile)
Nachzustände im Fehlerfall Aufforderung zur Eingabe in richtiger

Zeile
Standardablauf Spieler wählt für jedes der vier Felder

eine Farbe
Alternativabläufe keine
Regeln Jede Farbe nur ein Mal benutzen

4.1.3 Code auswerten

Akteur System
Kurzbeschreibung Code wird vom System ausgewertet
Vorbedingungen Code eingegeben
Nachzustand Korrektur gemacht, bewertet
Fehlersituationen Nicht alle vier Felder gesetzt
Nachzustände im Fehlerfall Aufforderung zum Ausfüllen aller Fel-

der
Standardablauf 1. System vergleicht Codewort mit

Lösung
2. System wertet aus
3. System gibt Resultat auf GUI aus

Alternativabläufe keine
Regeln Weiss: Farbe richtig, aber am falschen

Ort
Schwarz: Farbe und Ort richtig
Die Reihenfolge der Lösungsstecker
hängt nicht mit der Reihenfolge der
Lösung zusammen

KAPITEL 4. ANALYSE / DESIGN 9

4.1.4 Code aufdecken

Akteur Spieler
Kurzbeschreibung Spieler gibt auf und möchte die Lösung

sehen
Vorbedingungen Spiel gestartet
Nachzustand Code (Lösung) ist aufgedeckt
Fehlersituationen keine
Nachzustände im Fehlerfall keine
Standardablauf 1. Spieler drückt ”Spiel beenden”

2. System deckt Lösung auf
Alternativabläufe keine
Regeln keine

4.1.5 Spielende

Akteur System
Kurzbeschreibung Spiel ist zu Ende weil Code erraten oder

weil Spieler verloren (nicht geschafft in
8 Versuchen)

Vorbedingungen - 8 erfolglose Versuche
- Spieler hat Code erraten

Nachzustand - GUI-Ausgabe: Gratulation
- Highscore zeigen und speichern

Fehlersituationen keine
Nachzustände im Fehlerfall keine
Standardablauf 1. Spieler hat nicht gewonnen

2. GUI-Ausgabe: Pech gehabt
3. Lösung aufdecken (Siehe Anwen-
dungsfall ”Code aufdecken”)
4. Highscore anzeigen

Alternativabläufe 1. Spieler hat Code in weniger als 8 Ver-
suchen erraten
2. Name vom Spieler abfragen
3. Eintrag in Highscoreliste
4. Highscore anzeigen

Regeln Ein Spiel ist beendet falls Code erraten,
oder falls Code nicht in weniger als 8
Versuchen erraten.

KAPITEL 4. ANALYSE / DESIGN 10

4.1.6 Spiel beenden

Akteur Spieler
Kurzbeschreibung Applikation wird beendet
Vorbedingungen Applikation läuft
Nachzustand Applikation ist beendet
Fehlersituationen keine
Nachzustände im Fehlerfall keine
Standardablauf 1. Spieler drückt ”Beenden”

2. System beendet
Alternativabläufe keine
Regeln keine

4.2 GUI-Design

Folgende Bilder zeigen die ersten Entwürfe unserer Oberfläche. Die Desi-
gnvorschläge beinhalten alle definierten Elemente. Die Anordnung und defi-
nitive Implementierung wird sich dann beim Programmieren des Graphical
User Interfaces ergeben.

4.2.1 Hauptformular

Das Hauptformular besteht im wesentlichen aus dem Spielbrett (Matrix) und
dem Pin-Vorrat (Abbildung 4.1). Über der Spielmatrix wird die Lösung im
Falle, dass das Spiel gelöst wurde angezeigt. Ebenfalls soll der Username
während dem Spiel am oberen Rand dargestellt werden.

4.2.2 Dialoge

Dialoge gibt es im Wesentlichen in unserem Mastermind nur einen. Der Opti-
onsdialog (Abbildung 4.2) bietet dem Benutzer die Möglichkeit die Spielein-
stellungen anzupassen. In ihm werden beispielsweise der Playername, die An-
zahl Pins und die Grösse der Matrix, das Aussehen der Pins, usw. festgelegt.

4.2.3 Menüs

Jede Aktion kann über einen Menüpunkt aufgerufen werden. Die Menüs (Ab-
bildung 4.3) sind in die Kategorien Datei, Spiel und Hilfe gegliedert. Unter
”Datei” sind alle Punkte für die grobe Steuerung (Speichern, Beenden, usw.)

KAPITEL 4. ANALYSE / DESIGN 11

Abbildung 4.1: das Hauptformular der Applikation

KAPITEL 4. ANALYSE / DESIGN 12

Abbildung 4.2: der Optionsdialog der Applikation

Abbildung 4.3: die Menüs ”Datei”, ”Spiel” und ”Hilfe” der Applikation

zu finden. ”Spiel” umfasst alle relevanten Menüeinträge um ein Spiel zu spie-
len. Über den Menüpunkt Hilfe gelangt man zu der eigentlichen Online-Hilfe
und der About-Box.

Kapitel 5

Realisierung

In der ganze Realisierungsphase wurde sehr viel Wert auf das MVC-Konzept
gelegt (Abbildung 5.1). Aus diesem Grund sind auch unsere 3 Hauptpackages
Model, View und Control entstanden. Wir haben das grundlegende MVC-
Konzept ein wenig auf unsere Bedürfnisse angepasst. In unserer Version fiel
der Update-Link vom Model zur View weg, da jegliche Kommunikation zwi-
schen dem Model und der View über den Controller abgewickelt wird.

5.1 UML Diagramme

5.1.1 Klassendiagramme

In unserem UML-Klassendiagramm erkennt man anhand der Packagedefini-
tionen die Implementation des MVC-Konzeptes. In der Planungsphase wurde
der grösste Teil unserer UML-Diagramme bereits erstellt. Einzig die extrem
spezifischen GUI-Klassen wurden nachträglich während der Realisierung ein-

Abbildung 5.1: das grundlegende MVC-Konzept

13

KAPITEL 5. REALISIERUNG 14

gefügt, da während der Planung nur die Haupt-GUI-Klasse zur Diskussion
stand.
Unser UML-Diagramm basiert auf einem Hauptpackage mastermind und 3
Unterpackages model, view und control. Im Model-Package befinden sich al-
le Klassen welche in irgend einer Weise dazu dienen die Daten zu speichern.
Das Control-Package beinhaltet genau eine Klasse, die Contoller-Klasse. Al-
le Klassen welche irgend eine darstellungstechnische Funktion wahrnehmen
befinden sich im View-Package.
Für eine detaillierte Funktionsbeschreibung der einzelnen Klassen und deren
Methoden konsultieren Sie bitte unsere beiliegende JavaDoc.

5.1.2 Sequenzdiagramme

Ebenfalls wurden bereits während der Analyse- und Designphase, nachdem
das UML-Klassendiagramm definiert war, einige Sequenzdiagramme ange-
fertigt. Diese UML-Sequenzdiagramme wiederspiegeln nicht mehr genau den
Ist-Zustand, aber die eigentliche Kommunikation, bzw. die Interaktionen zwi-
schen den einzelnen MVC-Elementen wird immer noch schön visualisiert.
Als Beispiel dient die Aktion ”Spiel Starten” (Abbildung 5.8). An diesem
Beispiel kann man einfach nachvollziehen, wie der Benutzer auf dem GUI
(durch eine Aktion) den Event an den Controller auslöst. Dementsprechend
erstellt der Controller anschliessen den ratenden Spieler (in dem Fall das
Objekt für den menschlichen Spieler mit Username, usw.) und das Objekt
für den vorgebenden Spieler (in diesem Fall der Computer). Anschliessend
erstellt er mit den neuen Werten eine neue Matrix und registriert sich auch
gleich bei ihr als Listener. Anschliessend benachrichtigt er das GUI, dass sich
die Matrix geändert habe und veranlasst so einen Repaint des Spielfeldes.
Ähnlich laufen die Aktionen beim Setzen von einem neuen Pin ab (Abbildung
5.9). Wiederum geht die Aktion vom Benutzer aus, welcher auf dem GUI
einen Pin auf die Spielfläche gesetzt hat. Das GUI sendet wieder einen Event
(mit den Pindaten) ab. Der Controller als Listener für diesen Event reagiert
entsprechend und veranlasst die Matrix diesen Spielzug zu speichern. Die
Matrix wiederum feuert den nächsten Event, dass Sie sich geändert habe und
das GUI zeichnet darauf ihr Spielfeld neu. So wird verhindert, dass zwischen
GUI-Spielfeld und den Daten in der Matrix Unterschiede entstehen. Auch
wenn etwas anderes unsere Matrix verändern würde, so würde sich unser
GUI automatisch aktualisieren, da die Matrix bei jeder Veränderung einen
Event feuert.

KAPITEL 5. REALISIERUNG 15

Abbildung 5.2: unser UML-Diagramm

KAPITEL 5. REALISIERUNG 16

Abbildung 5.3: das Matrix-Model

KAPITEL 5. REALISIERUNG 17

Abbildung 5.4: das Hiscore-Model

Abbildung 5.5: das Player-Model

KAPITEL 5. REALISIERUNG 18

Abbildung 5.6: das Contol-Package

KAPITEL 5. REALISIERUNG 19

Abbildung 5.7: das View-Package

Abbildung 5.8: UML-Sequenzdiagramm ”Spiel starten”

KAPITEL 5. REALISIERUNG 20

Abbildung 5.9: UML-Sequenzdiagramm ”Pin setzen”

KAPITEL 5. REALISIERUNG 21

5.2 Screenshots

Abbildung 5.10: der Splash-Screen

KAPITEL 5. REALISIERUNG 22

Abbildung 5.11: der Optionsdialog

Abbildung 5.12: das Spielfeld

KAPITEL 5. REALISIERUNG 23

Abbildung 5.13: ein verlorenes Game mit gehängtem Kenny

Abbildung 5.14: die Hiscore-Tabelle

KAPITEL 5. REALISIERUNG 24

Abbildung 5.15: die Hilfe

Abbildung 5.16: der About-Dialog

KAPITEL 5. REALISIERUNG 25

5.3 Zusätzliche Features

Während der ganzen Realisierungsphase kamen uns immer wieder irgendwel-
che speziellen Sonderfunktionen in den Sinn. Diese Sonderfunktionen hatten
nicht immer einen direkten Zusammenhang mit dem Mastermind-Spiel, viel-
mehr waren es Funktionen, von denen man einmal gehört hatte und gerne
einmal programmiert hätte. Diese Wünsche wurden aufgenommen und ohne
Priorität teilweise entwickelt. So entstanden diverse Funktionen, hinter denen
eine grosse Menge Arbeit und Spass stehen und hier dokumentiert werden.

5.3.1 Hangman

Die Idee des mitwachsenden Hangmans ist eher zufällig entstanden, nachdem
ein Projektteammitglied diese beiden Spiele einmal namentlich vertauscht
hatte. Die Idee wurde analysiert und in Angriff genommen. Der Hangman
(Kenny) wächst dynamisch mit jeder Linie die man im Mastermind nicht
erraten hat. Wurde das Spiel nicht gelöst, so ”hängt” Kenny und der typische
Sound ”Oh my god, they killed Kenny!” erklingt aus den PC-Speakers. Wie
anfänglich erwähnt, hat jedes Feature auch einen gewissen Programmierreiz
hervorgerufen. Deshalb wurde das Zeichnen des Hangmans auch mit einem
Thread realisiert, welcher die Linien zusätzlich animiert.

5.3.2 Konfiguration

Die ”normale” Ausführung eines Masterminds besteht aus einem Spielfeld
mit 4 Spalten, 8 Reihen und 6 unterschiedliche Pins. Unser Mastermind kann
individuell konfiguriert werden. Das heisst, jegliche Spielgrössen können an-
gepasst werden. Beispielsweise kann die Spielfeldgrösse grösser oder kleiner
eingestellt werden. Wem die Standardpins zu langweilig sind kann auch zwi-
schen diversen anderen Variationen eine auswählen.

5.3.3 Öffnen / Speichern

Anfänglich war auch angedacht, dass man zu einem beliebigen Zeitpunkt sein
begonnenes Spiel zu speichern und zu einem späteren Zeitpunkt fortsetzen.
Der Grundgedanke hinter dieser Idee war das Interesse an der Serialisierung
von Objekten. Die ganze Geschichte wurde dann auch implementiert und
ausführlich getestet. Einige Zeit später, nachdem unser Mastermind einige
realen Test unterzogen wurde, haben wir uns entschieden die beiden Funk-
tionen zum Öffnen und Speichern der Spielstände wieder zu entfernen. Diese
Funktionen hatten einen grossen Nachteil: Wird ein Spiel gestartet und dann

KAPITEL 5. REALISIERUNG 26

bereits gespeichert, so kann man in aller Ruhe das Spiel lösen. Mit der so
erratenen Lösung kann man nun den alten Spielstand wieder laden und das
Spiel nach einem Spielzug und wenigen Sekunden Zeit lösen. Diese Funk-
tionen dienten also dem Verfälschen unserer Hiscore und genau das wollten
wir von Anfang an verhindern. Deshalb können in der aktuellen Version die
Spielstände nicht mehr gespeichert, bzw. geladen werden.

5.3.4 Applet / Application

Unser Mastermind kann wahlweise als Java Application oder als Java Applet
ausgeführt werden. Der Clou daran ist jedoch, dass nur ein Java Archive
File existiert und die beiden Varianten in der selben Code-Struktur realisiert
wurden.

Applet-Code

<applet code=’’ch.skybeam.mastermind.Mastermind’’

archive=’’Mastermind.jar’’ name=’’Mastermind’’ width = ’’686’’

height=’’385’’ id=’’Mastermind’’> </applet>

5.3.5 Debuglevels

Während der ganzen Entwicklung mussten immer wieder diverse Debug-
Ausgaben geschrieben werden. Diese ganzen Meldungen wurden über eine
zentrale Funktion ausgegeben. Die Debug-Meldungen wurden in verschiede-
ne Levels unterteilt:

Level 1 Normale Debug-Meldungen

Level 9 Debug-Meldungen mit zusätzlichen Thread-Informationen

Die Debug-Ausgaben können mit folgendem Befehl aktiviert werden:
java -DDEBUG=[Debuglevel] -jar Mastermind.jar

Kapitel 6

Testing

Mastermind wurde in zwei Testbereiche unterteilt. Das funktionale Testing
wurde mittels JUnit-Testcases realisiert. Für den zweiten Bereich, dem User-
Testing, wurden verschiedene Test-Szenarios aufgestellt und geprüft ob die
Applikation auch entsprechend unseren Erwartungen reagiert.

6.1 User-Testing

Die verschiedenen Testfälle wurden (mit Hilfe der anfänglich definierten Use-
Cases) festgelegt und anschliessend durch Benutzer durchgeführt.

6.1.1 Die Testfälle

Nr. Beschreibung Erwartetes Resultat Ergebnis

1 Reihe auswerten
bevor die ganze
Reihe gefüllt ist

Meldung, dass zuerst
die ganze Reihe aus-
gefüllt werden muss

Dialog: ”Sie haben
versucht eine un-
vollständige Reihe
auszuwerten. Bitte
vervollständigen Sie
zuerst die Reihe!”

2 Reihe falsch
ausfüllen

Hangman baut sich
um eine Stufe auf.

Hangman baut sich
auf

3 Codewort in ”An-
zahl Zeilen” -
Zügen nicht erra-
ten.

Kenny ist tot /
gehängt.

Hangman wurde in
den Anzahl Zeilen
vollständig aufgebaut.

27

KAPITEL 6. TESTING 28

4 Optionen einstellen
auf: Modus =
Mehrfarbig, Level
= Normal, Anzahl
Pins = 8, Spielfeld:
8x4, Design =
numbers, Name =
Gabi

Mehrfachfarben er-
laubt, Korrektur
zeigt nicht an welcher
Punkt richtig war,
Spielfeld ist 8x4,
Design ist Zahlen,
Spielername ist Gabi

Meldung, dass Op-
tionen verändert und
deshalb ein neues
Spiel gestartet werden
muss. Bestätigung
durch OK.

5 Spiel ist gewonnen. Lösung wird aufge-
deckt.

Lösung aufgedeckt

6 Spiel wird aufge-
geben, indem der
Button ”aufgeben”
gedrückt wird.

Lösung wird aufge-
deckt.

In den Lösungsfel-
dern erscheinen die
Lösungspins

7 Pin in der Pinaus-
wahl anklicken.

Im Feld ”Auswahl” er-
scheint der gewählte
Pin.

Nachdem der Pin mit
der Maus gewählt
wurde, wird er in der
Auswahl angezeigt

8 In den Optionen
den Spielernamen
angeben.

Name erscheint auf
dem Spielbrett.

Korrekter Name ist
auf dem Spielbrett
sichtbar

9 Hilfe anzeigen Beschreibung des
Mastermindes wird
angezeigt.

Dialog mit Benutzer-
anleitung wird geöff-
net

10 Spiel beenden Mastermind wird ge-
schlossen Fenster

Mastermind wird ge-
schlossen

11 Spiel ”neues Spiel” Spielfeld wird geleert. Neues Spielfeld mit
neuem Codewort zum
erraten gezeichnet

12 Hiscore öffnen Hiscore wird angezeigt Dialog mit Highscore
öffnet sich

13 Zeilen ausfüllen
und überprüfen, ob
richtig korrigiert
wird.

Korrekturpunkte rich-
tig anhand des Le-
vels und der Überein-
stimmungen mit der
Lösung

Nach mehrmaligen
Tests kann man sagen,
dass die Korrektur
richtig funktioniert

Kapitel 7

Quellen / Tools

http://www.skybeam.ch/mastermind Unsere Projektwebseite

http://www.adarvo.ch Jegliche Dokumente (ohne Quellcode) wurden über
Adarvo ThemeWare ausgetauscht / verwaltet.

http://www.cvshome.org Unser gesamter Sourcecode wurde mittels CVS-
System verwaltet.

http://www.eclipse.org Als IDE für Java setzten wir Eclipse ein.

http://java.com/de Software Development Kit for Java

http://www.magicdraw.com Der von uns eingesetzte UML-Designer

http://www.dante.de Dieses Dokument wurde mit LATEX2ε geschrieben

http://www.uml.org Alle Code-Visualisierungen wurden mit der Unified
Modelling Language erstellt

29

Abbildungsverzeichnis

4.1 das Hauptformular der Applikation 11
4.2 der Optionsdialog der Applikation 12
4.3 die Menüs ”Datei”, ”Spiel” und ”Hilfe” der Applikation 12

5.1 das grundlegende MVC-Konzept 13
5.2 unser UML-Diagramm . 15
5.3 das Matrix-Model . 16
5.4 das Hiscore-Model . 17
5.5 das Player-Model . 17
5.6 das Contol-Package . 18
5.7 das View-Package . 19
5.8 UML-Sequenzdiagramm ”Spiel starten” 19
5.9 UML-Sequenzdiagramm ”Pin setzen” 20
5.10 der Splash-Screen . 21
5.11 der Optionsdialog . 22
5.12 das Spielfeld . 22
5.13 ein verlorenes Game mit gehängtem Kenny 23
5.14 die Hiscore-Tabelle . 23
5.15 die Hilfe . 24
5.16 der About-Dialog . 24

30

